Digital communications : (Record no. 1773)

MARC details
000 -LEADER
fixed length control field 06094nam a22002177a 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20131205112726.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 131205b20122009ii ||||g |||| 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788131764749 (pbk)
040 ## - CATALOGING SOURCE
Transcribing agency NCL
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.382
Item number RIC-D 2012 2714
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Rice, Michael.
245 1# - TITLE STATEMENT
Title Digital communications :
Remainder of title a discrete-time approach/
Statement of responsibility, etc. by Michael Rice
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. New Delhi :
Name of publisher, distributor, etc. Dorling Kindersley,
Date of publication, distribution, etc. 2012c.
300 ## - PHYSICAL DESCRIPTION
Extent vii, 788p. :
Other physical details ill. ;
Dimensions 24 cm.
500 ## - GENERAL NOTE
General note Index included
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Contents 1 Introduction 1.1 A brief History of Communications 1.2 Basics of Wireless Communications 1.3 Digital Communications 1.4 Why Discrete-Time Processing is so Popular 1.5 Organization of the Text 1.6 Notes and References 2 Signals and Systems 1: A Review of the Basics 2.1 Introduction 2.2 Signals 2.2.1 Continuous-Time Signals 2.2.2 Discrete-Time Signals 2.3 Systems 2.3.1 Continuous-Time Systems 2.3.2 Discrete- Time Systems 2.4 Frequency Domain Characterization 2.4.1 Laplace Transform 2.4.2 Continuous-Time Fourier Transform 2.4.3 Z Transform 2.4.4 Discrete-Time Fourier Transform 2.5 The Discrete Fourier Transform 2.6 The Relationship Between Discrete-Time and Continuous- Time Systems 2.6.1 The Sampling Theorem 2.6.2 Discrete-Time Processing of Continuous-Time Signals 2.7 Discrete-Time Processing of Bandpass Signals 2.8 Notes and References 2.9 Exercises 3 Signals and Systems 2: Some Useful Discrete-Time Techniques for Digital Communications 3.1 Introduction 3.2 Multirate 3.2.1 Impulse Train Sampling 3.2.2 Downsampling 3.2.3 Upsampling 3.2.4 The Noble Identities 3.2.5 Polyphase Filterbanks 3.3 Discrete-Time Filters Design Methods 3.3.1 IIR Filter Design 3.3.2 FIR Filter Design 3.3.3 Two Important Filters: The Differentiator and the Intergrator 3.4 Notes and References 3.5 Exercises 4 A Review of Probability Theory 4.1 Basic Definitions 4.2 Gaussian Random Variables 4.2.1 Density and Distribution Functions 4.2.2 Product Moments 4.2.3 BivariateGaussian Distribution 4.2.4 Functions of Random Variables 4.3 Multivariate Gaussian Random Variables 4.4 Random Sequences 4.4.1 Power Spectral Density 4.4.2 Random Sequences and Discrete-Time LTI Systems 4.5 Additive White Gaussian Noise 4.5.1 Continuous Time Random Processes 4.5.2 The White Gaussian Random Process: A Good Model For Noise 4.5.3 White Gaussian Noise in a sampled data System 4.6 Notes and References 4.7 Exercises 5 Linear Modulation 1: Demodulation, and Detection 5.1 Signal Spaces 5.1.1 Definitions 5.1.2 The Synthesis Equation and Linear Modulation 5.1.3 The Analysis Equation and Detection 5.1.4 The matched Filter 5.2 M-ary Baseband Pulse Amplitude Modulation (PAM) 5.2.1 Continuous-Time Realization 5.2.2 Discrete-Time Realization 5.3 M-ary Quadrature Amplitude Modulation (MQAM) 5.3.1 Continuous-Time Realization 5.3.2 Discrete-Time Realization 5.4 Offset QPSK 5.5 Multicarrier 5.6 Maximum Likelihood detection 5.6.1 Introduction 5.6.2 Preliminaries 5.6.3 Maximum Likelihood Decision Rule 5.7 Notes and References 5.8 Exercises 6 Linear Modulation 2: Performance 6.1 Performance of PAM 6.1.1 Bandwidth 6.1.2 Probability of Error 6.2 Performance of QAM 6.2.1 Bandwidth 6.2.2 Probability of Error 6.3 Comparisons 6.4 Link Budgets 6.4.1 Received Power and The Friis equation 6.4.2 Equivalent Noise Temperature and Noise Figure 6.4.3 The Link Budget Equation 6.5 Projection White Noise Onto An Orthonormal Basis Set 6.6 Notes and References 6.7 Exercises 7 Carrier Phase Synchronization 7.1 Basics Problem Formulation 7.2 Carrier Phase Synchronization for QPSK 7.2.1 A Heuristic Phase Error Detector 7.2.2 The Maximum Likelihood Phase Error Detector 7.2.3 Examples 7.3 Carrier Phase Synchronization for BPSK 7.4 Carrier Phase Synchronization for MQAM 7.5 Carrier Phase Synchronization for Offset QPSK 7.6 Carrier Phase Synchronization for BPSK and QPSK Using Continuous-Time-Techniques 7.7 Phase Ambiguity Resolution 7.7.1 Unique Word 7.7.2 Differential Encoding 7.8 Maximum Likelihood Phase Estimation 7.8.1 Preliminaries 7.8.2 Carrier Phase Estimation 7.9 Notes and References 7.10 Exercises 8 Symbol Timing Synchronization 8.1 Basic Problem Formulation 8.2 Continuous-Time Techniques for M-ary PAM 8.3 Continuous-Time Techniques for MQAM 8.4 Discrete-Time Techniques for M-ary PAM 8.4.1 Timing Error Detectors 8.4.2 Interpolation 8.4.3 Interpolation Control 8.4.4 Examples 8.5 Discrete-Time Techniques for MQAM 8.6 Discrete-Time Techniques for Offset QPSK 8.7 Dealing with Transition Density: A Parctical Consideration 8.8 Maximum Likelihood Estimation 8.8.1 Preliminaries 8.2.2 Symbol Timing Estimation 8.9 Notes and References 8.10 Exercises 9 System Components 9.1 The Continuous-Time Discrete-Time Interface 9.1.1 Analog-to-Digital Converter 9.2.2 Digital-to-Analog Converter 9.2 Discrete-Time Oscillators 9.2.1 Discrete Oscillators Based on LTI Systems 9.2.2 Direct Digital Synthesizer 9.3 Resampling Filters 9.3.1 CIC and Hogenauer Filters 9.3.2 Half-Band Filters 9.3.3 Arbitrary Resampling Using Polyphase Filterbanks 9.4 CoRDiC: Coordinate Rotation Digital Computer 9.4.1 Rotations: Moving on a Circle 9.4.2 Moving Along Other Shapes 9.5 Automatic gain Control 9.6 Notes and References 9.7 Exercise 10 System Design 10.1 Advance Discrete-Time Architectures 10.1.1 Discrete-Time Architectures for QAM Modulators 10.1.2 Discrete-Time Architectures for QAM Demodulators 10.1.3 Putting It all Together 10.2 Channelization 10.2.1 Continuous-Time Techniques: The Superheterodynd Receiver 10.2.2 Discrete-Time Techniques Using Multirate Processing 10.3 Notes and References 10.4 Exercises
520 ## - SUMMARY, ETC.
Summary, etc. <br/>"Digital Communications: A Discrete-Time Approach by Michael Rice presents the traditional topics in digital communications such as modulation (PAM and QAM); detection (using the matched filer); and performance in AWGN. It also includes less traditional topics as pulse shaping; carrier phase synchronization; symbol timing synchronization; automatic gain control; channel selection and advanced discrete-time
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Digital communications.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Total Renewals Full call number Barcode Date last seen Date checked out Price effective from Koha item type
          Namal Library Namal Library Electrical Engineering 12/05/2013 Old Book 1 1 621.382 RIC-D 2012 2714 0002714 04/25/2017 03/31/2017 12/05/2013 Books