000 -LEADER |
fixed length control field |
08344nam a22002537a 4500 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
OSt |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20201027171512.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
201027b2016 ||||| |||| 001 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119657262 |
040 ## - CATALOGING SOURCE |
Transcribing agency |
NCL |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
515 |
Item number |
ANT-C 2016 10940 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Anton, Howard |
245 ## - TITLE STATEMENT |
Title |
Calculus : |
Remainder of title |
late transcendentals / |
Statement of responsibility, etc. |
by Howard Anton |
250 ## - EDITION STATEMENT |
Edition statement |
11th ed. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc. |
Hoboken, NJ : |
Name of publisher, distributor, etc. |
Wiley, |
Date of publication, distribution, etc. |
2016 |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xxii, 1048 : |
Other physical details |
ill. ; |
Dimensions |
28 cm. |
500 ## - GENERAL NOTE |
General note |
Index Included |
500 ## - GENERAL NOTE |
General note |
Calculus: Late Transcendentals, 11th EMEA Edition strives to increase student comprehension and conceptual understanding through a balance between rigor and clarity of explanations; sound mathematics; and excellent exercises, applications, and examples. Anton pedagogically approaches Calculus through the Rule of Four, presenting concepts from the verbal, algebraic, visual, and numerical points of view. |
505 ## - FORMATTED CONTENTS NOTE |
Formatted contents note |
1 Limits and Continuity 1<br/><br/>1.1 Limits (An Intuitive Approach) 1<br/><br/>1.2 Computing Limits 13<br/><br/>1.3 Limits at Infinity; End Behavior of a Function 22<br/><br/>1.4 Limits (Discussed More Rigorously) 31<br/><br/>1.5 Continuity 40<br/><br/>1.6 Continuity of Trigonometric Functions 51<br/><br/>2 The Derivative 59<br/><br/>2.1 Tangent Lines and Rates of Change 59<br/><br/>2.2 The Derivative Function 69<br/><br/>2.3 Introduction to Techniques of Differentiation 80<br/><br/>2.4 The Product and Quotient Rules 88<br/><br/>2.5 Derivatives of Trigonometric Functions 93<br/><br/>2.6 The Chain Rule 98<br/><br/>2.7 Implicit Differentiation 105<br/><br/>2.8 Related Rates 112<br/><br/>2.9 Local Linear Approximation; Differentials 119<br/><br/>3 The Derivative in Graphing and Applications 130<br/><br/>3.1 Analysis of Functions I: Increase, Decrease, and Concavity 130<br/><br/>3.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials 139<br/><br/>3.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents 148<br/><br/>3.4 Absolute Maxima and Minima 157<br/><br/>3.5 Applied Maximum and Minimum Problems 164<br/><br/>3.6 Rectilinear Motion 177<br/><br/>3.7 Newton’s Method 185<br/><br/>3.8 Rolle’s Theorem; Mean-Value Theorem 191<br/><br/>4 Integration 203<br/><br/>4.1 An Overview of the Area Problem 203<br/><br/>4.2 The Indefinite Integral 208<br/><br/>4.3 Integration by Substitution 217<br/><br/>4.4 The Definition of Area as a Limit; Sigma Notation 223<br/><br/>4.5 The Definite Integral 233<br/><br/>4.6 The Fundamental Theorem of Calculus 242<br/><br/>4.7 Rectilinear Motion Revisited Using Integration 253<br/><br/>4.8 Average Value of a Function and its Applications 262<br/><br/>4.9 Evaluating Definite Integrals by Substitution 266<br/><br/>5 Applications of the Definite Integral in Geometry, Science, and Engineering 277<br/><br/>5.1 Area Between Two Curves 277<br/><br/>5.2 Volumes by Slicing; Disks and Washers 284<br/><br/>5.3 Volumes by Cylindrical Shells 294<br/><br/>5.4 Length of a Plane Curve 300<br/><br/>5.5 Area of a Surface of Revolution 306<br/><br/>5.6 Work 311<br/><br/>5.7 Moments, Centers of Gravity, and Centroids 319<br/><br/>5.8 Fluid Pressure and Force 328<br/><br/>6 Exponential, Logarithmic, and Inverse Trigonometric Functions 336<br/><br/>6.1 Exponential and Logarithmic Functions 336<br/><br/>6.2 Derivatives and Integrals Involving Logarithmic Functions 347<br/><br/>6.3 Derivatives of Inverse Functions; Derivatives and Integrals Involving Exponential Functions 353<br/><br/>6.4 Graphs and Applications Involving Logarithmic and Exponential Functions 360<br/><br/>6.5 L’Hôpital’s Rule; Indeterminate Forms 367<br/><br/>6.6 Logarithmic and Other Functions Defined by Integrals 376<br/><br/>6.7 Derivatives and Integrals Involving Inverse Trigonometric Functions 387<br/><br/>6.8 Hyperbolic Functions and Hanging Cables 398<br/><br/>7 Principles of Integral Evaluation 412<br/><br/>7.1 An Overview of Integration Methods 412<br/><br/>7.2 Integration by Parts 415<br/><br/>7.3 Integrating Trigonometric Functions 423<br/><br/>7.4 Trigonometric Substitutions 431<br/><br/>7.5 Integrating Rational Functions by Partial Fractions 437<br/><br/>7.6 Using Computer Algebra Systems and Tables of Integrals 445<br/><br/>7.7 Numerical Integration; Simpson’s Rule 454<br/><br/>7.8 Improper Integrals 467<br/><br/>8 Mathematical Modeling with Differential Equations 481<br/><br/>8.1 Modeling with Differential Equations 481<br/><br/>8.2 Separation of Variables 487<br/><br/>8.3 Slope Fields; Euler’s Method 498<br/><br/>8.4 First-Order Differential Equations and Applications 504<br/><br/>9 Infinite Series 514<br/><br/>9.1 Sequences 514<br/><br/>9.2 Monotone Sequences 524<br/><br/>9.3 Infinite Series 531<br/><br/>9.4 Convergence Tests 539<br/><br/>9.5 The Comparison, Ratio, and Root Tests 547<br/><br/>9.6 Alternating Series; Absolute and Conditional Convergence 553<br/><br/>9.7 Maclaurin and Taylor Polynomials 563<br/><br/>9.8 Maclaurin and Taylor Series; Power Series 573<br/><br/>9.9 Convergence of Taylor Series 582<br/><br/>9.10 Differentiating and Integrating Power Series; Modeling with Taylor Series 591<br/><br/>10 Parametric and Polar Curves; Conic Sections 605<br/><br/>10.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves 605<br/><br/>10.2 Polar Coordinates 617<br/><br/>10.3 Tangent Lines, Arc Length, and Area for Polar Curves 630<br/><br/>10.4 Conic Sections 639<br/><br/>10.5 Rotation of Axes; Second-Degree Equations 656<br/><br/>10.6 Conic Sections in Polar Coordinates 661<br/><br/>11 Three-Dimensional Space; Vectors 674<br/><br/>11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces 674<br/><br/>11.2 Vectors 680<br/><br/>11.3 Dot Product; Projections 691<br/><br/>11.4 Cross Product 700<br/><br/>11.5 Parametric Equations of Lines 710<br/><br/>11.6 Planes in 3-Space 717<br/><br/>11.7 Quadric Surfaces 725<br/><br/>11.8 Cylindrical and Spherical Coordinates 735<br/><br/>12 Vector-Valued Functions 744<br/><br/>12.1 Introduction to Vector-Valued Functions 744<br/><br/>12.2 Calculus of Vector-Valued Functions 750<br/><br/>12.3 Change of Parameter; Arc Length 759<br/><br/>12.4 Unit Tangent, Normal, and Binormal Vectors 768<br/><br/>12.5 Curvature 773<br/><br/>12.6 Motion Along a Curve 781<br/><br/>12.7 Kepler’s Laws of Planetary Motion 794<br/><br/>13 Partial Derivatives 805<br/><br/>13.1 Functions of Two or More Variables 805<br/><br/>13.2 Limits and Continuity 815<br/><br/>13.3 Partial Derivatives 824<br/><br/>13.4 Differentiability, Differentials, and Local Linearity 837<br/><br/>13.5 The Chain Rule 845<br/><br/>13.6 Directional Derivatives and Gradients 855<br/><br/>13.7 Tangent Planes and Normal Vectors 866<br/><br/>13.8 Maxima and Minima of Functions of Two Variables 872<br/><br/>13.9 Lagrange Multipliers 883<br/><br/>14 Multiple Integrals 894<br/><br/>14.1 Double Integrals 894<br/><br/>14.2 Double Integrals over Nonrectangular Regions 902<br/><br/>14.3 Double Integrals in Polar Coordinates 910<br/><br/>14.4 Surface Area; Parametric Surfaces 918<br/><br/>14.5 Triple Integrals 930<br/><br/>14.6 Triple Integrals in Cylindrical and Spherical Coordinates 938<br/><br/>14.7 Change of Variables in Multiple Integrals; Jacobians 947<br/><br/>14.8 Centers of Gravity Using Multiple Integrals 959<br/><br/>15 Topics in Vector Calculus 971<br/><br/>15.1 Vector Fields 971<br/><br/>15.2 Line Integrals 980<br/><br/>15.3 Independence of Path; Conservative Vector Fields 995<br/><br/>15.4 Green’s Theorem 1005<br/><br/>15.5 Surface Integrals 1013<br/><br/>15.6 Applications of Surface Integrals; Flux 1021<br/><br/>15.7 The Divergence Theorem 1030<br/><br/>15.8 Stokes’ Theorem 1039<br/><br/>A Appendices<br/><br/>A Trigonometry Review (Summary) A1<br/><br/>B Functions (Summary) A8<br/><br/>C New Functions from Old (Summary) A11<br/><br/>D Families of Functions (Summary) A16<br/><br/>E Inverse Functions (Summary) A23<br/><br/>Answers to Odd-Numbered Exercises A28<br/><br/>Index I-1<br/><br/>Web Appendices (online only)<br/>Available for download at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.<br/><br/>A Trigonometry Review<br/><br/>B Functions<br/><br/>C New Functions from Old<br/><br/>D Families of Functions<br/><br/>E Inverse Functions<br/><br/>F Real Numbers, Intervals, and Inequalities<br/><br/>G Absolute Value<br/><br/>H Coordinate Planes, Lines, And Linear Functions<br/><br/>I Distance, Circles, And Quadratic Equations<br/><br/>J Solving Polynomial Equations<br/><br/>K Graphing Functions Using Calculators and Computer Algebra Systems<br/><br/>L Selected Proofs<br/><br/>M Early Parametric Equations Option<br/><br/>N Mathematical Models<br/><br/>O The Discriminant<br/><br/>P Second-Order Linear Homogeneous Differential Equations<br/><br/>Chapter Web Projects: Expanding the Calculus Horizon (online only)<br/>Available for download at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.<br/><br/>Robotics – Chapter 2<br/><br/>Railroad Design – Chapter 7<br/><br/>Iteration and Dynamical Systems – Chapter 9<br/><br/>Comet Collision – Chapter 10<br/><br/>Blammo the Human Cannonball – Chapter 12<br/><br/>Hurricane Modeling – Chapter 15 |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Bivens, Irl |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Davis, Stephen |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
|
Koha item type |
Books |