Data mining for business intelligence : concepts, techniques, and applications in Microsoft Office Excel with XLMiner / by Galit Shmueli, Nitin R. Patel, Peter C. Bruce.
Material type:
Item type | Current library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
![]() |
Namal Library Computer Science | 005.54 SHM-D 2012 4375 (Browse shelf (Opens below)) | Available | 0004375 |
Browsing Namal Library shelves, Shelving location: Computer Science Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
005.54 FRY-E 2005 1830 Excel annoyances : how to fix the most annoying things about your favorite spreadsheet / | 005.54 JEL-E 2014 4003 Excel 2013 pivot table data crunching / | 005.54 MAY-F 2004 1825 Financial analysis with Microsoft Excel 2002 / | 005.54 SHM-D 2012 4375 Data mining for business intelligence : concepts, techniques, and applications in Microsoft Office Excel with XLMiner / | 005.54 SYR-M 2017 9864 My Excel 2016 / | 005.54 WAL-M 2013 4254 Microsoft Excel 2010 bible / | 005.54 WAL-M 2013 4255 Microsoft Excel 2010 bible / |
Includes bibliographical references (p. 271-272) and index.
CHAPTER 1: Introduction ----------------------
CHAPTER 2: Overview of data mining process ---------------------
CHAPTER 3: Data exploration and Dimension reduction -------------------------
CHAPTER 4: Evaluating Classification and predictive performance ----------------------
CHAPTER 5: Multiple linear regression ---------------------
CHAPTER 6: Three simple classification method ---------------------
CHAPTER 7: Classification and regression trees ----------------------
CHAPTER 8: Logistic regression ----------------------
CHAPTER 9: Neural nets -------------------
CHAPTER 10: Discriminant analysis ---------------------
CHAPTER 11: Association rules -----------------------
CHAPTER 12: Cluster analysis ----------------------
There are no comments on this title.