Filter synthesis using Genesys S/Filter / by Randall W Rhea

By: Rhea, Randall WMaterial type: TextTextSeries: Artech House microwave libraryPublication details: Boston: Artech House, [2014]Description: xiv, 327 pages : illustrations (black and white) ; 24 cmISBN: 9781608078028 (hbk)Subject(s): Electric filters | Electric filters--Design and construction | Electric filters--Mathematical modelsDDC classification: 621.3815324
Contents:
Machine generated contents note: 1.Transmission Zeros -- 1.1.Determining TZ by Inspection -- 1.2.Filter Degree -- 1.3.Canonical Realization -- 1.4.Influence of TZs on the Response -- References -- 2.All-Pole Lowpass and Highpass -- 2.1.Initial All-Pole Lowpass Parameters -- 2.2.Dual Topologies -- 2.3.Chebyshev Approximation with Even Order -- 2.4.All-Pole Highpass Example -- References -- 3.Lowpass with Finite Zeros -- 3.1.Introduction -- 3.2.Alternative Topologies -- 4.Conventional Bandpass -- 4.1.Bandpass Transform -- 4.2.Classification Symmetry or Antimetry -- 4.3.A 75- to 125-MHz Bandpass -- 4.4.A 96- to 104-MHz Bandpass Filter -- 4.5.Comparative Analysis of the Wide and Narrow Filters -- Reference -- 5.Extraction Sequences -- 5.1.The Extraction Tab -- Reference -- 6.Customized Bandpass Filters -- 6.1.Custom Filter Specification -- 6.2.Partial Extractions of FTZs -- 6.3.Inexact Extractions -- 6.4.Inexact Example -- 7.Norton Transforms -- 7.1.Norton Series Transform -- Contents note continued: 7.2.Removing a Transformer with the Series Norton -- 7.3.Norton Shunt Transform -- 7.4.Equal-Valued Inductor Bandpass -- 7.5.The History Tab -- 7.6.Equate All Ls -- 8.Bandpass with Resonators -- 8.1.Coupled Parallel-Resonator Filters -- 8.1.1.Exact Design of a Parallel Resonator All-Pole Filter -- 8.1.2.Termination Coupling Transforms -- 8.1.3.Find Dual Transform -- 8.1.4.Exact Design with Like Coupling Elements -- 8.1.5.The Equate All Shunt Ls or Shorted Stubs Transform -- 8.1.6.Termination-Coupled Bandpass -- 8.2.Coupled Series-Resonator Filters -- 8.2.1.The Basic Series-Resonator Bandpass -- 8.2.2.Tubular Bandpass -- 8.2.3.Manufacture of the Tubular Bandpass -- 8.2.4.Generalized Series-Resonator Bandpass -- 8.2.5.Tunable Constant-Bandwidth Bandpass -- Reference -- 9.TEM-Mode Resonators -- 9.1.Filter Insertion Loss -- 9.2.Filter Using 50-Ohm Coaxial Resonators -- 9.2.1.Lumped to Distributed Equivalents -- Contents note continued: 9.2.2.The Convert Using Advanced Tline Routine -- 9.3.Generalized Bandpass Using Ceramic Resonators -- 9.3.1.Creating Parallel Resonators -- 9.3.2.Shifting the Internal Impedance Level -- 9.3.3.The Pi to Tee Transform: Increasing Coupling Caps -- 9.3.4.Converting the Parallel L-C to Coaxial Resonators -- 9.3.5.Optimizing the Values -- 9.4.Ceramic Bandpass with Two FTZs -- References -- 10.Piezoelectric Devices -- 10.1.Quartz-Crystal Device Model -- 10.1.1.Physical Form of the Quartz Crystal -- 10.1.2.Insertion Response of a Quartz Crystal -- 10.1.3.Modeling the Quartz Crystal -- 10.1.4.Calculating Model Parameters from the Response -- 10.1.5.The Quartz-Crystal Model and Filter Design -- 10.2.Quartz-Crystal Filter Approximate Design -- 10.3.Nulling the Static Capacitance -- 10.4.Design of a Lower-Sideband Crystal Filter -- 10.5.Upper-Sideband Quartz-Crystal Filter -- 10.6.Filters with TZs Above and Below the Passband -- Contents note continued: 10.7.Wide-Bandwidth Quartz-Crystal Filters -- 10.8.Very Wide-Bandwidth Quartz-Crystal Filters -- 10.9.Ceramic-Piezoelectric Resonators -- Reference -- 11.Symmetry -- 11.1.Physical Symmetry -- 11.1.1.A Lowpass Filter with FTZ Pairings -- 11.1.2.A Bandpass Filter with FTZ Pairings -- 11.2.Response Symmetry -- 11.2.1.All-Pole Symmetric Response Filters -- 11.2.2.Generalized Bandpass with Symmetric Response -- 11.2.3.Symmetry by FTZ Placement -- 11.3.Group-Delay Equalization -- References -- 12.Matching with S/Filter -- 12.1.Matching Concepts -- 12.1.1.Complex Conjugate Match -- 12.1.2.Two-Element Matching Networks -- 12.2.Real Terminations -- 12.2.1.Exploiting Extraction Sequences -- 12.2.2.Exploiting Resonator Filters -- 12.3.Complex Terminations -- 12.3.1.Fano's Limit -- 12.3.2.Example: Power Amplifier Match -- 12.3.3.Example: Broadband Antenna Match -- References -- 13.Distributed Filters -- 13.1.Comparing Distributed and Lumped Filters -- Contents note continued: 13.2.The Genesys Microwave Filter Module -- 13.3.Distributed Synthesis Concepts -- 13.3.1.TLEs -- 13.3.2.Richards Transform -- 13.3.3.Kuroda Identities -- 13.3.4.Ikeno Transforms -- 13.3.5.Kuroda-Minnis Transform -- 13.3.6.Half-Angle Transform -- 13.3.7.Interdigital Transform -- 13.3.8.Combline Transform -- 13.4.Lumped to Distributed Equivalent Transforms -- 13.5.Inverters -- 13.6.The Convert Using Advanced TLine Routine -- 13.7.Box Modes -- 13.8.Introduction to Distributed Filter Examples -- References -- 14.Distributed Lowpass Filters -- 14.1.Exact Methods -- 14.1.1.Lowpass with Redundant UEs -- 14.1.2.Stub TLEs and Contributing Unit Elements -- 14.1.3.Lowpass with Only Contributing UEs (Stepped-Z) -- 14.1.4.Generalized Lowpass Filter -- 14.2.Approximate Methods -- 14.2.1.All-Pole: Equivalent Series TLE and Shorted Stubs -- 14.2.2.Stepped Impedance Lowpass -- 14.2.3.Generalized Lowpass -- 14.3.Size Reduction by Penetration -- 14.4.Radial Stub Lowpass -- Contents note continued: 14.5.Hybrid Lowpass -- 14.6.Distributed Lowpass Summary -- Reference -- 15.Distributed Bandstop Filters -- 15.1.All-Pole with Stubs and Contributing UEs -- 15.1.1.Wide Bandwidth Bandstop -- 15.1.2.Moderate Bandwidth Bandstop -- 15.1.3.Narrow Bandstop with Ikeno Transforms -- 15.2.Generalized Narrowband Bandstop -- 16.Distributed Bandpass Filters -- 16.1.Tutorials of Bandpass by Synthesis -- 16.1.1.Edge-Coupled Using Richards Transform -- 16.1.2.Edge-Coupled Using Inverters -- 16.1.3.Interdigital Using Inverters -- 16.2.Unique Bandpass Designs -- 16.2.1.Combline with Capacitive External Coupling -- 16.2.2.Miniature Bandpass with Contributing UEs -- 16.2.3.Narrow Bandwidth with UEs and an FTZ -- 16.2.4.Penetrating Combline -- 16.2.5.Minnis Class-D Bandpass -- 16.3.Hybrid Bandpass -- 16.3.1.Penetrating Combline with Capacitors -- 16.3.2.Generalized Combline Hybrid -- 16.3.3.Direct-Coupled Bandpass with Capacitors -- References -- Contents note continued: 17.Distributed Highpass Filters -- 17.1.The Hybrid Highpass -- 17.1.1.The All-Pole Hybrid: Distributed Synthesis -- 17.1.2.The All-Pole Hybrid Highpass: Lumped Synthesis -- 17.1.3.The Hybrid Highpass with UEs -- 17.1.4.The Hybrid Highpass with an FTZ -- 17.2.Purely Distributed Highpass -- 17.2.1.Highpass with Three TZs at DC and a UE -- 17.2.2.Highpass with Three TZs at DC and Four UEs -- 17.3.The Highpass Synthesized as a Bandpass -- 17.3.1.Hybrid Highpass from an Eighth-Degree Bandpass -- 17.3.2.Hybrid Highpass from a 10th-Degree Bandpass -- 18.Multiplexers -- 18.1.Contiguous Multiplexers -- 18.1.1.Contiguous Lowpass-Highpass Diplexer -- 18.1.2.Contiguous LP/BP/HP Multiplexer -- 18.2.Noncontiguous Multiplexers -- 18.2.1.Noncontiguous LP/HP Diplexer with FTZ -- 18.2.2.Noncontiguous Distributed Combline Diplexer -- Reference -- 19.Electromagnetic Simulation -- 19.1.Overview -- 19.1.1.The EMPower Program -- 19.1.2.The Momentum Program -- Contents note continued: 19.1.3.The EMPro Program -- 19.2.Box Modes -- 19.3.EM Simulation of Distributed Circuits -- 19.3.1.EM Simulation of Penetrating Stepped-Z Lowpass -- 19.3.2.EM Simulation of a Combline Bandpass -- 19.3.3.EM Simulation of a Direct-Coupled Bandpass -- 19.4.Classic Method of Bandpass Design -- 19.4.1.Classic Method Fundamentals -- 19.4.2.Example: Determining K Values -- 19.4.3.Example: Determining Q Values -- 19.4.4.Filter Example Using the Classic Method -- References -- Appendix A Example Summary -- A.1.Lumped Examples -- A.2.Distributed Examples -- A.3.Hybrid Examples -- A.4.Multiplexer Examples.
Summary: Transmission Zeros; All-Pole Lowpass and Highpass; Lowpass with Finite Zeros; Conventional Bandpass; Extraction Sequences; Customized Bandpass Filters; Norton Transform; Bandpass with Resonators; TEM-Mode Resonators; Piezoelectric Devices; Symmetry; S/Filter and Matching; Distributed Filters; Distributed Lowpass Filters; Distributed Bandstop Filter
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books Books Namal Library
Electrical Engineering
621.3815324 RHE-F 2014 8588 (Browse shelf (Opens below)) Available 0008588
Total holds: 0
Browsing Namal Library shelves, Shelving location: Electrical Engineering Close shelf browser (Hides shelf browser)
621.3815324 HAY-A 2003 10335 Adaptive filter theory / 621.3815324 HAY-A 2011 2648 Adaptive filter theory / 621.3815324 HAY-A 2011 3628 Adaptive filter theory / 621.3815324 RHE-F 2014 8588 Filter synthesis using Genesys S/Filter 621.3815364 GOL-P 2007 789 Phase-Locked loop engineering handbook for integrated circuits / 621.381537 COM-D 1995 3317 Digital logic and state machine design/ 621.381537 HIL-I 1981 4074 Introduction to switching theory and logical design/

Includes Index.

Machine generated contents note: 1.Transmission Zeros --
1.1.Determining TZ by Inspection --
1.2.Filter Degree --
1.3.Canonical Realization --
1.4.Influence of TZs on the Response --
References --
2.All-Pole Lowpass and Highpass --
2.1.Initial All-Pole Lowpass Parameters --
2.2.Dual Topologies --
2.3.Chebyshev Approximation with Even Order --
2.4.All-Pole Highpass Example --
References --
3.Lowpass with Finite Zeros --
3.1.Introduction --
3.2.Alternative Topologies --
4.Conventional Bandpass --
4.1.Bandpass Transform --
4.2.Classification Symmetry or Antimetry --
4.3.A 75- to 125-MHz Bandpass --
4.4.A 96- to 104-MHz Bandpass Filter --
4.5.Comparative Analysis of the Wide and Narrow Filters --
Reference --
5.Extraction Sequences --
5.1.The Extraction Tab --
Reference --
6.Customized Bandpass Filters --
6.1.Custom Filter Specification --
6.2.Partial Extractions of FTZs --
6.3.Inexact Extractions --
6.4.Inexact Example --
7.Norton Transforms --
7.1.Norton Series Transform --
Contents note continued: 7.2.Removing a Transformer with the Series Norton --
7.3.Norton Shunt Transform --
7.4.Equal-Valued Inductor Bandpass --
7.5.The History Tab --
7.6.Equate All Ls --
8.Bandpass with Resonators --
8.1.Coupled Parallel-Resonator Filters --
8.1.1.Exact Design of a Parallel Resonator All-Pole Filter --
8.1.2.Termination Coupling Transforms --
8.1.3.Find Dual Transform --
8.1.4.Exact Design with Like Coupling Elements --
8.1.5.The Equate All Shunt Ls or Shorted Stubs Transform --
8.1.6.Termination-Coupled Bandpass --
8.2.Coupled Series-Resonator Filters --
8.2.1.The Basic Series-Resonator Bandpass --
8.2.2.Tubular Bandpass --
8.2.3.Manufacture of the Tubular Bandpass --
8.2.4.Generalized Series-Resonator Bandpass --
8.2.5.Tunable Constant-Bandwidth Bandpass --
Reference --
9.TEM-Mode Resonators --
9.1.Filter Insertion Loss --
9.2.Filter Using 50-Ohm Coaxial Resonators --
9.2.1.Lumped to Distributed Equivalents --
Contents note continued: 9.2.2.The Convert Using Advanced Tline Routine --
9.3.Generalized Bandpass Using Ceramic Resonators --
9.3.1.Creating Parallel Resonators --
9.3.2.Shifting the Internal Impedance Level --
9.3.3.The Pi to Tee Transform: Increasing Coupling Caps --
9.3.4.Converting the Parallel L-C to Coaxial Resonators --
9.3.5.Optimizing the Values --
9.4.Ceramic Bandpass with Two FTZs --
References --
10.Piezoelectric Devices --
10.1.Quartz-Crystal Device Model --
10.1.1.Physical Form of the Quartz Crystal --
10.1.2.Insertion Response of a Quartz Crystal --
10.1.3.Modeling the Quartz Crystal --
10.1.4.Calculating Model Parameters from the Response --
10.1.5.The Quartz-Crystal Model and Filter Design --
10.2.Quartz-Crystal Filter Approximate Design --
10.3.Nulling the Static Capacitance --
10.4.Design of a Lower-Sideband Crystal Filter --
10.5.Upper-Sideband Quartz-Crystal Filter --
10.6.Filters with TZs Above and Below the Passband --
Contents note continued: 10.7.Wide-Bandwidth Quartz-Crystal Filters --
10.8.Very Wide-Bandwidth Quartz-Crystal Filters --
10.9.Ceramic-Piezoelectric Resonators --
Reference --
11.Symmetry --
11.1.Physical Symmetry --
11.1.1.A Lowpass Filter with FTZ Pairings --
11.1.2.A Bandpass Filter with FTZ Pairings --
11.2.Response Symmetry --
11.2.1.All-Pole Symmetric Response Filters --
11.2.2.Generalized Bandpass with Symmetric Response --
11.2.3.Symmetry by FTZ Placement --
11.3.Group-Delay Equalization --
References --
12.Matching with S/Filter --
12.1.Matching Concepts --
12.1.1.Complex Conjugate Match --
12.1.2.Two-Element Matching Networks --
12.2.Real Terminations --
12.2.1.Exploiting Extraction Sequences --
12.2.2.Exploiting Resonator Filters --
12.3.Complex Terminations --
12.3.1.Fano's Limit --
12.3.2.Example: Power Amplifier Match --
12.3.3.Example: Broadband Antenna Match --
References --
13.Distributed Filters --
13.1.Comparing Distributed and Lumped Filters --
Contents note continued: 13.2.The Genesys Microwave Filter Module --
13.3.Distributed Synthesis Concepts --
13.3.1.TLEs --
13.3.2.Richards Transform --
13.3.3.Kuroda Identities --
13.3.4.Ikeno Transforms --
13.3.5.Kuroda-Minnis Transform --
13.3.6.Half-Angle Transform --
13.3.7.Interdigital Transform --
13.3.8.Combline Transform --
13.4.Lumped to Distributed Equivalent Transforms --
13.5.Inverters --
13.6.The Convert Using Advanced TLine Routine --
13.7.Box Modes --
13.8.Introduction to Distributed Filter Examples --
References --
14.Distributed Lowpass Filters --
14.1.Exact Methods --
14.1.1.Lowpass with Redundant UEs --
14.1.2.Stub TLEs and Contributing Unit Elements --
14.1.3.Lowpass with Only Contributing UEs (Stepped-Z) --
14.1.4.Generalized Lowpass Filter --
14.2.Approximate Methods --
14.2.1.All-Pole: Equivalent Series TLE and Shorted Stubs --
14.2.2.Stepped Impedance Lowpass --
14.2.3.Generalized Lowpass --
14.3.Size Reduction by Penetration --
14.4.Radial Stub Lowpass --
Contents note continued: 14.5.Hybrid Lowpass --
14.6.Distributed Lowpass Summary --
Reference --
15.Distributed Bandstop Filters --
15.1.All-Pole with Stubs and Contributing UEs --
15.1.1.Wide Bandwidth Bandstop --
15.1.2.Moderate Bandwidth Bandstop --
15.1.3.Narrow Bandstop with Ikeno Transforms --
15.2.Generalized Narrowband Bandstop --
16.Distributed Bandpass Filters --
16.1.Tutorials of Bandpass by Synthesis --
16.1.1.Edge-Coupled Using Richards Transform --
16.1.2.Edge-Coupled Using Inverters --
16.1.3.Interdigital Using Inverters --
16.2.Unique Bandpass Designs --
16.2.1.Combline with Capacitive External Coupling --
16.2.2.Miniature Bandpass with Contributing UEs --
16.2.3.Narrow Bandwidth with UEs and an FTZ --
16.2.4.Penetrating Combline --
16.2.5.Minnis Class-D Bandpass --
16.3.Hybrid Bandpass --
16.3.1.Penetrating Combline with Capacitors --
16.3.2.Generalized Combline Hybrid --
16.3.3.Direct-Coupled Bandpass with Capacitors --
References --
Contents note continued: 17.Distributed Highpass Filters --
17.1.The Hybrid Highpass --
17.1.1.The All-Pole Hybrid: Distributed Synthesis --
17.1.2.The All-Pole Hybrid Highpass: Lumped Synthesis --
17.1.3.The Hybrid Highpass with UEs --
17.1.4.The Hybrid Highpass with an FTZ --
17.2.Purely Distributed Highpass --
17.2.1.Highpass with Three TZs at DC and a UE --
17.2.2.Highpass with Three TZs at DC and Four UEs --
17.3.The Highpass Synthesized as a Bandpass --
17.3.1.Hybrid Highpass from an Eighth-Degree Bandpass --
17.3.2.Hybrid Highpass from a 10th-Degree Bandpass --
18.Multiplexers --
18.1.Contiguous Multiplexers --
18.1.1.Contiguous Lowpass-Highpass Diplexer --
18.1.2.Contiguous LP/BP/HP Multiplexer --
18.2.Noncontiguous Multiplexers --
18.2.1.Noncontiguous LP/HP Diplexer with FTZ --
18.2.2.Noncontiguous Distributed Combline Diplexer --
Reference --
19.Electromagnetic Simulation --
19.1.Overview --
19.1.1.The EMPower Program --
19.1.2.The Momentum Program --
Contents note continued: 19.1.3.The EMPro Program --
19.2.Box Modes --
19.3.EM Simulation of Distributed Circuits --
19.3.1.EM Simulation of Penetrating Stepped-Z Lowpass --
19.3.2.EM Simulation of a Combline Bandpass --
19.3.3.EM Simulation of a Direct-Coupled Bandpass --
19.4.Classic Method of Bandpass Design --
19.4.1.Classic Method Fundamentals --
19.4.2.Example: Determining K Values --
19.4.3.Example: Determining Q Values --
19.4.4.Filter Example Using the Classic Method --
References --
Appendix A Example Summary --
A.1.Lumped Examples --
A.2.Distributed Examples --
A.3.Hybrid Examples --
A.4.Multiplexer Examples.

Transmission Zeros; All-Pole Lowpass and Highpass; Lowpass with Finite Zeros; Conventional Bandpass; Extraction Sequences; Customized Bandpass Filters; Norton Transform; Bandpass with Resonators; TEM-Mode Resonators; Piezoelectric Devices; Symmetry; S/Filter and Matching; Distributed Filters; Distributed Lowpass Filters; Distributed Bandstop Filter

There are no comments on this title.

to post a comment.