Principles of real analysis / by Charalambos D. Aliprantis and Owen Burkinshaw.
Material type:
Contents:
Ch. 1. Fundamentals of Real Analysis --
Ch. 2. Topology and Continuity --
Ch. 3. Theory of Measure --
Ch. 4. Lebesgue Integral --
Ch. 5. Normed Spaces and L[subscript p]-Spaces --
Ch. 6. Hilbert Spaces --
Ch. 7. Special Topics in Integration.
Item type | Current library | Call number | Copy number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
Namal Library Mathematics | 515 ALI-P 2017 10907 (Browse shelf (Opens below)) | 1 | Available | 0010907 | ||
![]() |
Namal Library Mathematics | 515 ALI-P 2017 10906 (Browse shelf (Opens below)) | 2 | Available | 0010906 |
Total holds: 0
Browsing Namal Library shelves, Shelving location: Mathematics Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
515 ADA-C 2010 10030 Student solution manual Calculus : | 515 ADA-C 2010 1960 Student solution manual Calculus : | 515 ALI-P 2017 10906 Principles of real analysis / | 515 ALI-P 2017 10907 Principles of real analysis / | 515 ANT-C 2002 10362 Calculus : | 515 ANT-C 2002 2152 Calculus : | 515 ANT-C 2002 8134 Calculus : |
Includes bibliographical references (p. 399-400) and index.
Ch. 1. Fundamentals of Real Analysis --
Ch. 2. Topology and Continuity --
Ch. 3. Theory of Measure --
Ch. 4. Lebesgue Integral --
Ch. 5. Normed Spaces and L[subscript p]-Spaces --
Ch. 6. Hilbert Spaces --
Ch. 7. Special Topics in Integration.
There are no comments on this title.