TY - BOOK AU - Vashchenko,V.A. AU - Sinkevitch,V.F. TI - Physical limitations of semiconductor devices SN - 9780387745138 (hbk) U1 - 621.38152 PY - 2008///] CY - New York PB - Springer KW - Semiconductors KW - Defects KW - Reliability KW - Halbleiterbauelement KW - Reliabilität KW - Versagen N1 - Includes bibliographical references (pages 309-324) and index; Chapter 1; Failures of Semiconductor Device; 1 --; 1.1; Catastrophic and degradation failure mechanisms; 3 --; 1.2; Transistor: structure, operation regimes, failure mechanisms; 5 --; 1.2.1; Bipolar transistors; 6 --; 1.2.2; Silicon field effect transistors; 9 --; 1.2.3; Compound semiconductor field-effect transistors; 11 --; 1.2.4; Specifics of transistor applications; 13 --; 1.3; Operation regime and reliability; 13 --; 1.3.1; Time before failure and failure rate; 13 --; 1.3.2; Safe operating area; 16 --; 1.4; Breakdown and Instability; 19 --; Chapter 2; Theoretical Basis of Current Instability in Transistor Structures; 25 --; 2.1; Basic equations; 25 --; 2.2; Current filamentation in uniform structures; 29 --; 2.2.1; Fluctuation instability; 29 --; 2.2.2; Bifurcation, soft and abrupt filamentation; 32 --; 2.3; Current filamentation in nonuniform structures; 37 --; 2.3.1; Splitting of I-V characteristic; 38 --; 2.3.2; Critical regime; 40 --; 2.3.3; Edge and ordinary filaments; 41 --; 2.3.4; Localization and stability of solitary filaments; 43 --; 2.3.5; Current filamentation at positive differential conductivity; 48 --; 2.4; Real inhomogeneity and current filamentation; 50 --; Chapter 3; Thermal Instability Mechanism; 53 --; 3.1; Emitter current filamentation in bipolar transistors; 53 --; 3.1.1; Some experimental results; 53 --; 3.1.2; Thermoelectrical model and stability criteria; 55 --; 3.1.3; Informative characteristic; 63 --; 3.1.4; Local defect and inhomogeneity impact; 66 --; 3.1.5; Delay time; 74 --; 3.1.6; Three-dimensional thermal model and design optimization; 78 --; 3.1.7; Current filamentation in dynamic regimes; 82 --; 3.2; Filamentation of channel current in MOSFETs; 87 --; 3.2.1; Criterion for channel current filamentation; 88 --; 3.3; Thermal breakdown; 92 --; 3.3.1; Thermal breakdown in bipolar transistors; 94 --; 3.3.2; Thermal breakdown in MOSFETs; 99 --; 3.3.3; Thermal breakdown in GaAs MESFETs; 102 --; 3.4; Avalanche-thermal breakdown; 104 --; 3.5; Peculiarities of avalanche thermal instability in JFETs and MESFETs; 108 --; Chapter 4; Isothermal Current Instability in Silicon BJT and MOSFETs; 111 --; 4.1; Avalanche injection in elementary semiconductor structures; 111 --; 4.1.1; Reversed biased p-n junction; 112 --; 4.1.2; Avalanche breakdown in p-i-n diode; 115 --; 4.1.3; Avalanche injection in n[superscript +]-n-n[superscript +] diode; 116 --; 4.1.4; Kinetics of avalanche injection in p-n-n[superscript +] structures; 118 --; 4.2; Isothermal instability in bipolar transistors; 120 --; 4.2.1; Isothermal instability in diode operation regimes; 121 --; 4.2.2; Avalanche injection in common-emitter circuit; 124 --; 4.2.3; Avalanche injection in common-base circuit; 130 --; 4.2.4; Criteria of isothermal current filamentation; 132 --; 4.2.5; Some ways of isothermal instability suppression; 136 --; 4.3; Isothermal current instability in MOSFET; 137 --; 4.3.1; Field distribution in MOSFET structures and critical operation regimes; 139 --; 4.3.2; Isothermal current filamentation in power planar MOSFETs in dc regime; 142 --; 4.3.3; Isothermal instability in vertical MOSFETs; 152 --; 4.4; Numerical simulation of electrical instability and current filamentation in NMOS devices; 157 --; Chapter 5; Isothermal Instability in Compound Semiconductor Devices; 169 --; 5.1; Avalanche breakdown in MESFETs; 170 --; 5.2; Drain-source avalanche-injection instability and filamentation; 177 --; 5.2.1; Experimental observation of current instability and filamentation in GaAs MESFETs; 178 --; 5.2.2; Specific of electrical burnout in large-signal operation; 183 --; 5.2.3; Current instability and filamentation in MODFET structures and short-channel MESFETs; 187 --; 5.2.4; Numerical simulation of the avalanche-injection instability in MESFET structures; 191 --; 5.2.5; Numerical simulation of the avalanche-injection filamentation in GaAs structures; 198 --; 5.2.6; The role of contact n[superscript +]-regions. Multiple current filament formation; 203 --; 5.3; Double avalanche-injection instability and filamentation at Schottky gate breakdown in MESFETs; 209 --; 5.4; Microplasma effect at the MESFET breakdown; 219 --; 5.4.1; Microplasma at the Schottky gate breakdown in MESFETs; 220 --; 5.4.2; Microplasma formation in n[superscript +]-i-n[superscript +] structures; 232 --; Chapter 6; Degradation Instabilities; 237 --; 6.1; Electromigration; 238 --; 6.2; Mutual diffusion of materials; 245 --; 6.3; Charge instability; 249 --; 6.4; Degradation phenomena in dynamic regimes; 253 --; 6.5; Degradation instability; 254 --; Chapter 7; Conductivity Modulation in ESD devices; 259 --; 7.1; ESD Design; 259 --; 7.1.1; The field of ESD protection; 260 --; 7.1.2; ESD devices; 264 --; 7.2; Spatial thermal runway in ESD devices; 270 --; 7.3; 3D Simulation of current instability in snapback NMOS devices; 274 --; 7.4; Conductivity modulation in BJT and Bipolar SCRs; 275 --; 7.5; Device-level physical ESD design; 282 --; 7.5.1; Self-Protection; 282 --; 7.5.2; Mixed device-circuit dual-mode solutions; 286 --; 7.6; Device-level positive and negative feedback; 290 --; Chapter 8; Physical Approach to Reliability; 297 --; 8.1; Reliability assurance at the stage of its development; 298 --; 8.2; Reliability assurance on a production phase; 301 --; 8.3; Estimation of reliability using accelerated tests; 304 N2 - "Physical Limitations of Semiconductor Devices provides an in-depth understanding of the phenomena and regularities that play a critical role in the limitation of semiconductor device capabilities. It discusses how thermo-electrical breakdown, conductivity modulation, and electrical and spatial current instability phenomena affect the limitations of the devices. The authors give examples of the phenomena ranging from elementary semiconductor diode structures to discrete power and integrated components. They also show circuits for both silicon and compound semiconductor devices." "The material covers different levels of complexity including phenomenological, analytical, and numerical simulation. The material also explores the most complex phenomena of current filamentation and the impact of local structure defects, physical safe operating area limitations, and various scenarios of catastrophic failures in semiconductor devices. The emphasis of the book is on the physical approach to reliability assurance, safe operating area, and ESD problems." "Physical Limitations of Semiconductor Devices provides an important link between the theoretical aspects of the physics of semiconductor devices, non-linear physics, and the practical applications of microelectronics."--Jacket ER -