TY - BOOK AU - Franklin,Jerrold TI - Classical electromagnetism SN - 9788131709740 (pbk) U1 - 537 PY - 2012/// CY - San Francisco PB - Pearson Addison-Wesley KW - Electromagnetism KW - Textbooks N1 - Includes bibliographical references (p. 459) and index; *Contents ContentsContents chapter1Foundations of Electrostatics1 section1.1Coulomb's Law1 section1.2The Electric Field4 section1.3Electric Potential6 subsection1.3.1Potential Gradient9 section1.4Gauss's Law12 subsection1.4.1Examples of Gauss's Law14 subsubsectionPoint Charge14 subsection1.4.2Spherically Symmetric Charge (and Mass)Distributions16 subsubsectionLine Charge17 subsubsectionInfinite Plane18 section1.5The Variation of E19 subsection1.5.1Divergence20 subsection1.5.2Dirac Delta Function23 subsection1.5.3Curl25 section1.6Summary of Vector Calculus29 subsection1.6.1Operation by 30 subsection1.6.2Integral Theorems32 section1.7Problems34 chapter2Further Development of Electrostatics37 section2.1Conductors37 section2.2Electrostatic Energy40 section2.3Electric Dipoles46 subsection2.3.1Fields Due to Dipoles46 subsection2.3.2Forces and Torques on Dipoles48 subsection2.3.3Dipole Singularity at 51 section2.4Electric Quadrupole Moment53 subsection2.4.1Dyadics54 subsection2.4.2Quadrupole dyadic55 subsection2.4.3Multipole Expansion60 section2.5Problems60 chapter3Methods of Solution in Electrostatics63 section3.1Differential Form of Electrostatics63 subsection3.1.1Uniqueness Theorem64 paragraphDirichlet Boundary Condition:66 paragraphNeumann Boundary Condition:66 paragraphUniqueness Theorem of Electrostatics:66 paragraphUniqueness Theorem of Electrostatics in the Presence of Conductors:67 paragraphUniqueness Theorem for the Electrostatic Potential:67 section3.2Images68 subsection3.2.1Infinite Grounded Plane68 subsection3.2.2Conducting Sphere70 section3.3Separation of Variables for Laplace's Equation73 subsection3.3.1Cartesian Coordinates73 subsection3.3.2Fourier Series76 subsection3.3.3Fourier Sine Integrals79 section3.4Surface Green's Function82 section3.5Problems86 chapter4Spherical and Cylindrical Coordinates89 section4.1General Orthogonal Coordinate Systems89 section4.2Spherical Coordinates91 subsection4.2.1Separation of Variables in Spherical Coordinates93 subsection4.2.2Azimuthal Symmetry, Legendre Polynomials94 paragraphNormalization97 paragraphOrthogonality97 paragraphGenerating Function99 paragraphRecursion Relation100 paragraph, , 100 subsection4.2.3Boundary Value Problems with AzimuthalSymmetry100 subsubsectionPotential Outside a Sphere101 subsection4.2.4Multipole Expansion104 subsubsectionUniformly Charged Needle105 subsubsectionMutipole Expansion for a Point Charge, Derivation of the Generating Function for Legendre Polynomials107 subsubsectionPoint Charge and Grounded Sphere108 subsubsectionMultipole Moment by Integration108 subsection4.2.5Spherical Harmonics109 subsubsectionPotential Outside a Sphere112 subsubsectionMultipole Moments112 subsubsectionRotation of Axes113 subsubsectionAddition Theorem114 subsubsectionMultipole Moment by Integration115 section4.3Cylindrical Coordinates117 subsection4.3.1Separation of Variables in Cylindrical Coordinates118 subsection4.3.2Two-Dimensional Cases (Polar Coordinates)119 subsubsectionPotential Inside a Cylinder120 subsubsectionFourier Series120 subsubsectionIntersecting Grounded Planes121 subsection4.3.3Three-Dimensional Cases, Bessel Functions123 subsubsectionBessel Functions123 paragraphRecursion Relation126 paragraphDerivative Recursion Relation126 paragraphAsymptotic Forms126 subsubsectionPotential Inside a Cylinder127 subsubsectionModified Bessel Functions130 section4.4Problems132 chapter5Green's Functions135 section5.1Application of Green's Second Theorem135 section5.2Surface Boundary Conditions135 section5.3Green's Function Solution of Poisson's Equation136 section5.4Surface Green's Function137 section5.5Symmetry of the Green's Function137 section5.6Green's Reciprocity Theorem138 section5.7Green's Functions for Specific Cases140 subsubsectionPlane Surface140 subsubsectionSphere140 section5.8Constructing Green's Functions141 subsection5.8.1Construction of the Green's Function fromEigenfunctions141 subsection5.8.2Reduction to a One-Dimensional Green's Function142 subsubsectionRectangular Coordinates142 subsubsectionSpherical Coordinates146 section5.9Problems147 chapter6Electrostatics in Matter149 section6.1Polarization149 section6.2The Displacement Vector D150 section6.3Uniqueness Theorem with Polarization153 section6.4Boundary Value Problems with Polarization154 subsection6.4.1Boundary Conditions on D, E, and 154 subsection6.4.2Needle or Lamina156 subsection6.4.3Capacitance157 subsection6.4.4Images158 subsection6.4.5Dielectric Sphere in a Uniform Electric Field160 subsection6.4.6Dielectric Sphere and Point Charge161 section6.5Induced Dipole--Dipole Force, the Van der Waals Force163 section6.6Molecular Polarizability164 subsection6.6.1Microscopic Electric Field164 subsection6.6.2Clausius--Mossotti Relation166 subsection6.6.3Models for Molecular Polarization167 section6.7Electrostatic Energy in Dielectrics169 section6.8Forces on Dielectrics170 section6.9Steady State Currents174 subsection6.9.1Current Density and Continuity Equation174 subsection6.9.2Ohm's Law175 subsection6.9.3Relaxation Constant176 subsection6.9.4Effective Resistance177 section6.10Problems179 chapter7Magnetostatics181 section7.1Magnetic Forces Between Electric Currents181 section7.2Units of Electricity and Magnetism183 section7.3The Magnetic Field B186 section7.4Applications of the Biot--Savart Law187 section7.5Magnetic Effects on Charged Particles190 section7.6Magnetic Effects of Current Densities193 subsection7.6.1Volume Current Density j193 subsection7.6.2Surface Current Density K194 subsection7.6.3Magnetic Effects of Moving Charges?195 section7.7Differential Form of Magnetostatics196 section7.8The Vector Potential A198 subsection7.8.1Gauge Transformation198 subsection7.8.2Poisson's Equation for A199 section7.9Ampere's Circuital Law200 section7.10Magnetic Scalar Potential203 subsection7.10.1Magnetic Field of a Current Loop205 section7.11Magnetic Dipole Moment209 subsection7.11.1Magnetic Multipole Expansion209 subsection7.11.2Magnetic Dipole Scalar Potential of a Current Loop209 subsection7.11.3Magnetic Dipole Vector Potential of a Current Loop210 subsection7.11.4Magnetic Dipole Moment of a Current Density212 subsection7.11.5Gyromagnetic Ratio213 subsection7.11.6The Zeeman Effect214 subsection7.11.7Magnetic Dipole Force, Torque, and Energy215 subsection7.11.8Fermi--Breit Interaction between Magnetic Dipoles218 section7.12Problems219 chapter8Magnetization and Ferromagnetism223 section8.1Magnetic Field Including Magnetization223 section8.2The H Field, Susceptibility, and Permeability225 section8.3Comparison of Magnetostatics and Electrostatics228 section8.4Ferromagnetism229 section8.5Hysteresis229 section8.6Permanent Magnetism231 section8.7Magnetization of a Ferromagnetic Sphere232 section8.8The Use of the H Field for a Permanent Magnet233 section8.9Bar Magnet234 section8.10Magnetic Images238 section8.11Problems239 chapter9Time Varying Fields, Maxwell's Equations241 section9.1Faraday's Law241 section9.2Inductance245 section9.3Displacement Current, Maxwell's Equations247 section9.4Electromagnetic Energy248 subsection9.4.1Potential Energy in Matter249 section9.5Magnetic Energy251 section9.6Electromagnetic Momentum, Maxwell Stress Tensor253 subsection9.6.1Momentum in the Polarization and MagnetizationFields256 section9.7Application of the Stress Tensor258 section9.8Magnetic Monopoles259 subsection9.8.1Dirac Charge Quantization260 section9.9Problems262 chapter10Electromagnetic Plane Waves265 section10.1Electromagnetic Waves from Maxwell's Equations265 section10.2Energy and Momentum in an Electromagnetic Wave267 subsection10.2.1Radiation Pressure269 section10.3Polarization270 subsection10.3.1Polarized Light270 subsection10.3.2Circular Basis for Polarization271 subsection10.3.3Birefringence273 subsection10.3.4Unpolarized Light275 section10.4Reflection and Refraction at a Planar Interface276 subsection10.4.1Snell's Law277 subsection10.4.2Perpendicular Polarization278 subsection10.4.3Parallel Polarization280 subsection10.4.4Normal Incidence281 subsection10.4.5Polarization by Reflection281 subsection10.4.6Total Internal Reflection283 subsection10.4.7Nonreflective Coating285 section10.5Problems287 chapter11Electromagnetic Waves in Matter290 section11.1Electromagnetic Waves in a Conducting Medium290 subsection11.1.1Poor Conductor292 subsection11.1.2Good Conductor293 section11.2Electromagnetic Wave at the Interface of a Conductor293 subsection11.2.1Perfect Conductor293 subsection11.2.2Radiation Pressure294 subsection11.2.3Interface with a Good Conductor295 subsubsectionEnergy Absorption at the Interface297 subsubsectionEffective Surface Current298 section11.3Frequency Dependence of Permittivity298 subsection11.3.1Molecular Model for Permittivity298 subsection11.3.2Dispersion and Absorption299 subsection11.3.3Conduction Electrons300 section11.4Causal Relation between D and E301 section11.5Wave Packets304 subsection11.5.1Natural Line Width306 section11.6Wave Propagation in a Dispersive Medium307 subsection11.6.1Group Velocity and Phase Velocity307 subsection11.6.2Spread of a Wave Packet309 subsection11.6.3No Electromagnetic Wave Travels Faster Than 310 section11.7Problems313 chapter12Wave Guides and Cavities315 section12.1Cylindrical Wave Guides315 subsection12.1.1Phase and Group Velocities in a Wave Guide316 section12.2Eigenmodes in a Waveguide317 subsection12.2.1TEM Waves318 subsubsectionCoaxial Wave Guide319 subsubsectionParallel-Wire Wave Guide319 subsection12.2.2TM Waves320 subsection12.2.3TE Waves320 subsection12.2.4Summary of TM and TE Modes321 subsection12.2.5Rectangular Wave Guides322 subsubsectionTM Modes:322 subsubsectionTE Modes:323 subsection12.2.6Circular Wave Guides324 section12.3Power Transmission and Attenuation in Wave Guides325 subsection12.3.1Power Transmitted325 subsection12.3.2Losses and Attenuation327 section12.4Cylindrical Cavities328 subsection12.4.1Resonant Modes of a Cavity328 subsection12.4.2Rectangular Cavity330 subsection12.4.3Circular Cylindrical Cavity330 subsection12.4.4Electromagnetic Energy in a Cavity331 subsection12.4.5Power Loss, Quality Factor333 section12.5Problems335 chapter13Electromagnetic Radiation and Scattering337 section13.1Wave Equation with Sources337 section13.2The Lorentz Gauge338 section13.3Retarded Solution of the Wave Equation339 section13.4Radiation Solution of the Wave Equation342 section13.5Center Fed Linear Antenna345 section13.6Electric Dipole Radiation348 section13.7Radiation by Atoms351 section13.8Larmor Formula for Radiation by an Accelerating Charge352 section13.9Magnetic Dipole Radiation355 section13.10Electric Quadrupole Radiation356 section13.11Scattering of Electromagnetic Radiation360 subsection13.11.1Electric Dipole Scattering360 subsection13.11.2Scattering by a Conducting Sphere, Magnetic Dipole Scattering363 section13.12Problems365 chapter14Special Relativity368 section14.1The Need for Relativity368 section14.2Mathematical Basis of Special Relativity, the Lorentz Transformation371 section14.3Spatial and Temporal Consequences of the Lorentz Transformation374 subsection14.3.1Relativistic Addition of Velocities374 subsection14.3.2Lorentz Contraction376 subsection14.3.3Time Dilation377 section14.4Mathematics of the Lorentz Transformation378 subsection14.4.1Three-Dimensional Rotations379 subsection14.4.2Lorentz Four-Vectors and Scalar Invariants382 section14.5Relativistic Space-Time386 subsection14.5.1The Light Cone387 subsection14.5.2Proper Time388 section14.6Relativistic Kinematics390 subsection14.6.1Four-Velocity390 subsection14.6.2Energy-Momentum Four-Vector391 subsection14.6.3392 section14.7Doppler Shift and Stellar Aberration393 section14.8Natural Relativistic Units, No More c395 section14.9Relativistic ``Center of Mass''396 section14.10Covariant Electromagnetism398 subsection14.10.1Charge-Current Four-Vector 398 subsection14.10.2Lorentz Invariance of Charge399 subsection14.10.3The Four-Potential 400 subsection14.10.4The Electromagnetic Field Tensor 401 section14.11Problems404 chapter15The Electrodynamics of Moving Bodies407 section15.1Relativistic Electrodynamics407 subsection15.1.1Covariant Extension of 407 subsection15.1.2Motion in a Magnetic Field408 subsection15.1.3Linear Accelerator409 section15.2Lagrange's and Hamilton's Equations for Electrodynamics410 subsection15.2.1Nonrelativistic Lagrangian410 subsection15.2.2Relativistic Lagrangian412 subsection15.2.3Hamiltonian for Electrodynamics414 section15.3Fields of a Charge Moving with Constant Velocity415 subsection15.3.1Energy Loss of a Moving Charge417 subsection15.3.2Interaction between Moving Charges419 section15.4Electromagnetic Fields of a Moving Charge421 subsection15.4.1Covariant Solution of the Wave Equation421 subsection15.4.2Lienard--Wiechert Potentials and Fields of a Moving Charge424 subsection15.4.3Constant Velocity Fields427 section15.5Electromagnetic Radiation by a Moving Charge428 subsection15.5.1Radiation with Acceleration Parallel to Velocity429 subsection15.5.2Radiation with Acceleration Perpendicular to Velocity431 subsection15.5.3Radiation from a Circular Orbit433 subsection15.5.4Relativistic Larmor formula436 section15.6Problems437 chapter16Classical Electromagnetism in a Quantum World439 section16.1Looking Back439 section16.2Electromagnetism as a Gauge Theory441 section16.3Local Gauge Invariance as the Grand Unifier of Interactions444 section16.4Classical Electromagnetism and Quantum Electrodynamics446 section16.5Natural Units448 section16.6451 chapterAConversion of Units457 chapterBDerivatives of the Retarded Time459 chapterRecommended Reading461 chapterIndex463 ER -